
TXT-tool 2.039-4.1
FLaIR Model (Forecasting
of Landslides Induced by Rainfalls)

Pasquale Versace, Giovanna Capparelli
and Davide Luciano De Luca

Abstract
Mathematical models for landslide forecasting constitute an important
component for Early Warning Systems. This teaching tool focuses on the
empirical model named FLaIR (Forecasting of Landslides Induced by
Rainfalls), developed at Laboratory of Environmental Carthography and
Hydraulic and Geological Modelling (CAMILab) of University of
Calabria (Italy). FLaIR is a general framework for many empirical models
proposed in technical literature: in particular, it reproduces as particular
cases all the ID (Intensity-Duration) schemes (Capparelli and Versace
2011). From the website www.camilab.unical.it it is possible to download
the software FLaIR.exe, together with a user guide.
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1 Introduction

Prediction of landslides induced by rainfall con-
stitutes an important topic for the development of
Early Warning Systems (EWS), and the most
adopted models are based on empirical approa-
ches. Although they are not so adequate to model
hydraulic and geotechnical aspects of landslide
triggering, empirical models are preferred for
EWS because of their simplicity: in fact, they can
easily be calibrated on the basis of only informa-
tion about historical movements, and can be
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straightforwardly used in real time as only
knowledge about rainfall time series (predicted or
observed in real time) is required to evaluate the
exceedance of critical conditions.

Several empirical models were proposed in
technical literature, and the most adopted belong
to the class of Intensity-Duration (ID) schemes
(Caine 1980; Cannon and Gartner 2005;
Corominas et al. 2005; Crosta and Frattini 2001;
Godt et al. 2006; Guzzetti et al. 2007, 2008;
Nadim et al. 2009).

This teaching tool focuses on the model
named FLaIR (Forecasting of Landslides
Induced by Rainfalls, Sirangelo and Versace
1996; Capparelli et al. 2009; Capparelli and
Versace 2011), which was developed at Labo-
ratory of Environmental Carthography and
Hydraulic and Geological Modelling (CAMILab)
of University of Calabria (Italy). FLaIR has
many advantages compared with other empirical
schemes; in particular (i) it considers the real
pattern of rainfall input and not average values
along assigned durations, and thus it is possible
to discriminate the influence of rainfall heights,
on the basis of their lag-time from the current
instant; (ii) it provides an unique threshold value
and not a reference function like an ID scheme,
and consequently it allows for a simpler check
about exceedance or not of critical conditions for
landslide forecasting, (iii) it is more flexible as it
is suitable for both shallow landslides, induced
by recent rainfall events, and deep movements,
triggered by precipitation aggregated on longer
durations. Moreover, FLaIR constitutes a general
framework for many empirical models, as it
reproduces as particular cases all the ID schemes
proposed in technical literature (Capparelli and
Versace 2011).

A short description of FLaIR mathematical
background is reported in Sect. 2; parameter
estimation is discussed in Sect. 3, while the use
for real-time forecasting is shown in Sect. 4.

From the website www.camilab.unical.it it is
possible to download the software FLaIR.exe,
together with a user guide.

2 Mathematical Background
of FLaIR Model

In empirical models it is possible to identify a
mobility function YðtÞ, which is a generic
function of the rainfall that can be correlated with
landslide occurrence. In details, if P Et½ � is the
occurrence probability of a landslide at time t,
and assuming that it depends only on YðtÞ, then
P Et½ � can be expressed as:

P Et½ � ¼
0 if YðtÞ\Y1

g YðtÞ½ � if Y1 � YðtÞ� Y2
1 if YðtÞ[ Y2

8<
: ð1Þ

where g �½ � is a non-decreasing generic function
that can take values between [0;1] in the interval
Y1;Y2½ �;Y1 is the value of YðtÞ for which mobi-
lization is impossible; and Y2 is the value of YðtÞ
for which mobilization is certain (Fig. 1).

A simple version of Eq. (1) is obtained by
assuming Y1 ¼ Y2 ¼ Ycr, where Ycr represents a
threshold value of YðtÞ which separates the
condition “impossible mobilization” from “cer-
tain mobilization”; that is (see also Fig. 2):

P[Et]

1

Y1 Y2 Y(t)

Fig. 1 Relationship between the occurrence probability
P Et½ � of a landslide at time t and the mobility function
YðtÞ, on the basis of Eq. (1)
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P Et½ � ¼ 0 if Y tð Þ\Ycr
P Et½ � ¼ 1 if Y tð Þ� Ycr

(
ð2Þ

The choice of criteria adopted by different
authors for defining threshold values is different:
e.g., Cannon and Ellen (1985) assume that the
threshold corresponds to “abundant landslides”,
while for Wieczorek (1987), the threshold cor-
responds to “one or more than one landslides.”
Nevertheless, the threshold approach remains the
most widely used in rainfall–landslide studies,
because of the difficulty in function identification
and parameter calibration in Eq. (1) owing to the
lack of experimental data.

In FLaIR model (Forecasting of Landslides
Induced by Rainfall, Capparelli and Versace
2011), the mobility function YðtÞ is computed as
a convolution between the rainfall infiltration rate
I �ð Þ and a filter function w �ð Þ:

Y tð Þ ¼
Z t

0

w t � sð ÞI sð Þds ð3Þ

and a landslide trigger is predicted by the model
when YðtÞ exceeds a critical threshold Ycr , which
is a parameter to be estimated (see Sect. 3).

The infiltration rate I sð Þ is assumed propor-
tional to the rainfall intensity P sð Þ, according to
the following simple relationship:

I sð Þ ¼ P sð Þ when P sð Þ�P0

P0 when P sð Þ[P0

�
ð4Þ

where P0 depends on soil characteristic, and it is
a parameter to be estimated. In the simplest
version, P0 is set equal to þ1, and then:

Y tð Þ ¼
Z t

0

w t � sð ÞP sð Þds ð5Þ

The function w �ð Þ is typical for each case
study and it plays a central role in mobility
function evaluation. It can assume different
expressions (Iiritano et al. 1998), like
rectangular:

w tð Þ ¼ 1=t0 if 0\t� t0
0 elsewhere

�
ð6Þ

exponential:

w tð Þ ¼ 1
k
e�

t
k t� 0; k[ 0 ð7Þ

gamma:

w tð Þ ¼ 1
baC að Þ t

a�1e�
t
b t� 0; a[ 0; b[ 0

ð8Þ

power:

w tð Þ ¼ mt�q 0\t\T; m[ 0; 0\q\1 ð9Þ

mixture of two exponential functions:

w tð Þ ¼ xb1 exp �b1tð Þþ 1� xð Þ exp �b2tð Þ
t� 0; b1 � b2 [ 0; 0�x� 1

ð10Þ

P[Et]

1

Ycr Y(t)

Fig. 2 Relationship between the occurrence probability
P Et½ � of a landslide at time t and the mobility function
YðtÞ, on the basis of Eq. (2)
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In particular, Eq. (10) is very flexible: the first
addendum reproduces the effect of the most
recent rainfall (short-term component) while the
second addendum is referred to the influence of
antecedent precipitation (long-term component).
The terms x and (1 − x) are the weights of the
two components.

Figure 3 shows the differences in mobility
function when different filter functions are
adopted to transform rainfall time series.

3 Parameter Estimation

FLaIR calibration is carried out by: (i) parameter
estimation referred to the chosen filter function
w �ð Þ; (ii) assessment of the critical threshold Ycr.
With this goal, dates of historical landslide
occurrences and rainfall database are used.

The estimated parameters for w �ð Þ must
ensure the condition for which the mobility
function YðtÞ attains its highest values just in
correspondence with historical movements.
FLaIR applications to real cases, usually char-
acterized by a small number of historical
movements (typically one or two), often show
that several parameter sets allow for this
condition.

Consequently, in order to define the “best”
parameter set, several techniques can be used. In
the following Sect. 3.1 the ranking method is
only discussed.

3.1 Ranking Method

Concerning a specific filter w �ð Þ, application of
ranking method consists of the identification of
the admissibility region, defined as the ensemble

Fig. 3 Example of differences in mobility function when different filter functions are adopted to transform rainfall time
series. Adapted from Capparelli and Versace (2011)
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of all the parameter sets h ¼ h1; h2; . . .; hnð Þ for
which the mobility function Yðt;hÞ assumes its
k highest values in correspondence with the
k known historical movements of the landslide.

Depending on the size of admissibility region,
the informative content of landslide events can be
defined. Figure 4 shows examples of two differ-
ent admissibility region, related to gamma filter
(Eq. 8):

• in the former (Fig. 4a), a lot of parameter sets
allow for the highest values of Yðt;hÞ when
historical landslides occurred. This situation
is typical when historical movements are
triggered by only heavy rain events. In this
case the informative content is very low, and
then using the rainfall histogram (and not
FLaIR model) produces the same results in
terms of forecasting of landslide triggering;

• in the latter (Fig. 4b), Yðt;hÞ presents its
highest values in correspondence with his-
torical landslides only for few parameter sets.
In this case the informative content is high.

For each admissible parameter set h it is
possible to define a lower limit function (indi-
cated as fL) and an upper limit function (indicated
as fU) for Yðt;hÞ; they represent, respectively, the
highest value that did not produce any movement
and the lowest value for which movement
occurred. Figure 5 refers to a simple case with
only one historical movement, but it can be
straightforwardly generalized to multiple move-
ments. It represents the mobility function,

evaluated on the basis of a rain data sample with
a time resolution equal to Δt. A tolerance interval
of length (u1 + u2)Δt is considered, in order to
take into account the uncertainty in the infor-
mation about the date of landslide movement.
Finally, to avoid the possibility of estimating the
lower limit function in the same rainfall event
that caused the landslide, a disjunction interval,
of length equal to (v1 + v2)Δt, is introduced.

Starting from the ensemble of all the admis-
sible parameter sets h, the best set is chosen by
maximizing the difference:

r ¼ fU � fL ð11Þ

that means to allow for the largest possible gap
between the mobility function Y(�) values related
to no movement and those related to a
movement.

Finally, estimation of Ycr has to be carried out,
and this requires particular care, especially in the
frequent case of only one historical movement:

• if Ycr ¼ fL then the model could forecast very
frequently a landslide occurrence;

• if Ycr ¼ fU then the model could not be able
to identify situations of real hazard, because
only events larger than the one that induced
the historical occurrence would be believed
able to trigger a second movement.

On the basis of the above aspects, it could be
preferable to use a critical threshold equal to the
lower limit function.

α

β

α

β(a) (b)Fig. 4 a Example of large
admissibility region;
b example of small
admissibility region
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4 Real-Time Forecasting

UseofFLaIRmodel for real-time forecastingconsists
in evaluating,with suitable early time, the probability
that at time t, the mobility function YðtÞ exceeds the
critical value Ycr, estimated on the basis of his-
torical information (Sect. 3), or its percentages
which are indicated as Levels of Criticality (LC)
and are defined in the following way:

LC1 ¼ n1Ycr ð12Þ

LC2 ¼ n2Ycr ð13Þ

LC3 ¼ n3Ycr ð14Þ

with n1\n2\n3\1: LC1; LC2 and LC3 are also
named ordinary, moderate and high criticality,
respectively.

In details, setting s as the current time, the
mobility function evaluated at s and related to the
future time t (with clearly s < t) is indicated as
YsðtÞ, which can be written as sum of two terms:

Ys tð Þ ¼
Zs

0

w t � uð ÞP uð Þduþ
Z t

s

w t � uð ÞP uð Þdu

ð15Þ

The first term is evaluated on the basis of
observed rainfall depth until time s and it can be
considered as the deterministic component of
YsðtÞ.

The second term is valuable by considering
rainfall nowcasting for P �ð Þ in the interval [s; t],
which is usually carried out with a Probabilistic
Quantitative Precipitation Forecast (PQPF), that
means a large number N of future rainfall sce-
narios (Fig. 6a). PQPF can be obtained by using
stochastic or meteorological models, and the
second addendum of Eq. (15) is indicated as the
probabilistic component. From N predicted
rainfall scenarios it is possible to obtain N real-
izations of YsðtÞ (Fig. 6b).

For each predicted scenario of YsðtÞ, the
dimensionless index n tð Þ ¼ Ys tð Þ=Ycr can be
defined, and the maximum value nmax in the

Y(t)

t

fU

fL

Historical movement

Interval due to uncertainty on date 
of historical movement

Interval for ensuring the 
independence among events

u1Δt u2Δt

v1Δt v2Δt

Fig. 5 Evaluation of upper
limit function fU and lower
limit function fL
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interval [s; t] is evaluated: consequently, the
exceedance probabilities can be computed in the
following way:

P n tð Þ[ n1½ � ¼ N nmax [ n1½ �
N

ð16Þ

P n tð Þ[ n2½ � ¼ N nmax [ n2½ �
N

ð17Þ

P n tð Þ[ n3½ � ¼ N nmax [ n3½ �
N

ð18Þ

where N nmax [ n1½ �;N nmax [ n2½ � and N nmax [ n3½ � indi-
cate the number of predicted scenarios for which
nmax is greater than n1; n2 and n3, respectively.

4.1 Example of Application

FLaIR model was applied in several areas of
Italy, in the context of agreements with Italian
National Department of Civil Protection and with
Regional Administrations.

As an example, the case study of Montenero
di Bisaccia, located in Molise region (southern
Italy), is shown, where a landslide occurred on
1st March 2006.

The stochastic model named PRAISE (Pre-
diction of Rainfall Amount Inside Storm Events,
Sirangelo et al. 2007) was used for rainfall pre-
diction in real time. PRAISE model was cali-
brated by considering the hourly time series of
Palata raingauge (close to Campobasso city).

 

t

P(t)

Y(t)

tτ

τ

(a)

(b)

Fig. 6 Real-time forecasting
in the interval [s; t]: a rainfall
nowcasting; b FLaIR
scenarios
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Gamma function (Eq. 8) was used as filter
w �ð Þ, and parameter estimation provided a �½ � ¼
0:9; b days½ � ¼ 20 and Ycr mm=day½ � ¼ 5.

The following threshold values for the
dimensionless index were considered: n1 ¼
0:4; n2 ¼ 0:6 and n3 ¼ 0:8.

Figure 7 represents on horizontal axis the time
in which rainfall occurred and mobility function
forecasting is performed; hourly rainfall heights
measured by raingauge are represented on the left
vertical axis, while in the right vertical axis there
is the probability evaluation that the mobility
function could exceed threshold values in the
successive six hours. From the figure it is clear
that approaching to the landslide date,
P n tð Þ[ n3½ � also increases; consequently, using
FLaIR coupled with a rainfall predictor allows to
provide, with sufficient advance, the exceedance
of the several thresholds.
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